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We examined the effects and mechanism of grape powder- (GP-) mediated improvement, if any, on aging kidney function. Adult
(3-month) and aged (21-month) Fischer 344 rats were treated without (controls) and with GP (1.5% in drinking water) and kidney
parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-
1), which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation) and gp91phox-NADPH oxidase
levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these
parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats
suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial
respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA.
Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These
results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions.

1. Introduction

Aging is a progressive degenerative process that adversely
affects different organ functions. Among these, age associated
changes in the kidney are the most dramatic [1]. Kidney
aging, also termed as renal senescence, involves multifold
anatomical and functional changes. Age-related anatomical
changes in the kidney include presence of sclerotic glomeruli
and interstitial fibrosis [2], while functional changes include
decreases in creatinine clearance and elevated levels of uri-
nary proteins (proteinuria) [3–5].

Mitochondria, the chief source of cellular energy cur-
rency ATP, are reported to decay during aging causing
mitochondrial respiratory failure [6, 7] and mitochondrial
myopathy [8] and are also involved in the generation of
reactive oxygen species (ROS) [9]. ROS-mediated kidney
damage and functional kidney impairment are well described
during aging [10–13]. Relevant to this, animal studies have

suggested a causal role for oxidative stress (ROS) in age-
related hypertension and also in kidney damage during
aging [14, 15]. Thus, the link between oxidative stress,
mitochondrial dysfunction, kidney damage, and functional
impairment during aging is strong.

Grape powder [16–20] recently has received much atten-
tion with regard to its health benefits. However, whether
grape powder has any beneficial effects on aging kidney and
its impact on improving mitochondrial functions are not
known. Therefore, the protective effects and mechanism of
GP-mediated improvement in aging kidney and mitochon-
drial functions have been examined in this study using a rat
aging model, Fischer 344 rats.

2. Materials and Methods

2.1. Animals. Adult (1-month) and aged (21-month) male
Fischer 344 (F344) rats raised by Taconic Farms, Inc.
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Table 1: Composition and toxicology of grape powder used in these studies.

(a) Chemical composition of freeze-dried grape powder (California table
grape commission)

Compounds Total Individual
Catechins 22.06mg/kg

Catechin 13.7mg/kg
Epicatechin 8.36mg/kg

Anthocyanins 709.8mg/kg
Peonidin 232.2mg/kg
Cyanidin 156.2mg/kg
Malvidin 321.4mg/kg

Flavonols
Quercetin 148.7mg/kg
Kaempferol 11.61mg/kg
Isorhamnetin 23.9mg/kg

Stilbenes
Resveratrol 1.51mg/kg

Total polyphenols 383mg/100 g

(b) Toxicology of grape powder constituents

Compound Dose (per kg body wt/day) Duration Toxicity
Direct catechins ≤2500mg Chronic (90 days) Nontoxic [21]
Anthocyanins ≤2000mg Chronic (90 days) Nontoxic [22]
Flavonoids ≤5000mg Acute (24 hrs) Nontoxic [23]
Resveratrol ≤3000mg 4 weeks Toxic [24]

(Hudson, NY), were purchased from the National Institute
on Aging. The rats were housed in plastic cages in the
University of Houston animal care facility and were used as
per the National Institutes of Health guidelines and approved
protocols by the University of Houston Animal Care and Use
Committee. The rats were acclimatized in the animal facility
for 1 week before any treatment was undertaken.

2.2. Freeze-Dried Grape Powder. Freeze-dried grape powder
(GP) was obtained from California Table Grape Commission
(California Table Grape Commission, Fresno, CA).The com-
position of the grape powder includes fresh red, green, and
black California grapes (seeded and seedless varieties) that
have been frozen, ground with food quality dry ice, freeze-
dried, and reground using Good Manufacturing Practices
for food products throughout. The powder was processed
and stored to preserve the integrity of the biologically active
compounds found in fresh grapes. Detailed composition of
the grape powder was included in Table 1(a). The grape
powder was hygroscopic and was provided in small, sealed
packets. Upon receipt, it was stored at −80∘C in moisture
proof containers until used. Fresh solution of 1.5% grape
powder in tap water was made every day to feed the rats.
This grape powder dosewas carefully chosen after conducting
pilot dose-response studies as the selected dosage showed
most pronounced effects on oxidative stress and blood
pressure in these rats [18, 20].

2.3. Grape Powder Treatment. Adult and aged rats were
divided into control and grape powder groups. GP groups
of adult and aged rats were provided with 1.5% freeze-dried
grape powder in drinking water for 6 weeks as we reported
earlier [20]. Control groups of adult and aged rats received
only drinking water (without GP) for 6 weeks. Thereafter,
rats were anesthetized to determine different parameters as
detailed below. Food and water supplemented without and
with GP were provided to rats ad libitum.

2.4. Animal Surgery. Animals were anesthetized with
Inactin� (100mg/kg, i.p.) and tracheotomy was performed
to facilitate spontaneous breathing followed by cannulating
left carotid artery with P-50 tubing using our previously
published procedures [15]. Briefly, the tubing was connected
to a pressure transducer, which was connected to a blood
pressure recording device (Grass Polygraph, model 7D; Grass
Instrument, Quincy, MA). After the stabilization of 15min,
blood pressure was recorded for 30min. Thereafter, left
jugular vein was catheterized with PE-50 tubing and 50 𝜇L
of blood collected through carotid artery. Left ureter was
catheterized with PE-10 tubing, saline was infused through
jugular vein (1% body weight/hr, volume expansion), and
two 30min urine samples were collected through ureter.
The parameters obtained for two urine collections were
averaged and considered for data interpretations. After
collecting second urine, 50 𝜇L of blood from carotid artery
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was collected, and plasma was separated by centrifugation
and stored at −80∘C for further analyses.

Second set of control and GP treated adult and aged
rats were anesthetized as above, midline abdominal incision
made with a scalpel blade and bladder urine obtained with
syringe for biochemical studies. Kidneys were isolated and
kept in cold saline. Superficial kidney cortex (rich in proximal
tubules) was isolated and nuclear and cytosolic fractions were
made on the same day (described below). All other samples
were aliquoted and frozen at −80∘C until further use.

2.5. Sodium and Creatinine Measurements. Ureter urine and
plasma samples were used tomeasure sodium and creatinine.
Sodium concentrations were measured using atomic absorp-
tion spectrometer (AAnalyst 400, Perkin Elmer, Waltham,
MA) as described before [15]. Creatinine levels were deter-
mined using a commercially available assay kit (catalog
number K625-100; BioVision, Mountain View, CA) as pub-
lished [25]. GFR, as a function of creatinine clearance, was
determined using the following equation: urinary volume ×
urinary creatinine ÷ plasma creatinine.

2.6. Bladder Urine Analyses. Commercially available kits
were used to measure kidney injury molecule (KIM-1) (R
& D Systems Inc. Minneapolis, MN) and protein (Thermo
Scientific, Rockford, IL).

2.7. Nuclear and Cytosolic Fraction Isolation. A commercially
available kit (Thermo Scientific, Rockford, IL) was employed
to purify nuclear and cytosolic fractions from superficial
cortex as described [26].

2.8. Real-Time PCR. Real-time PCR was performed as
described [25]. Briefly, total RNA from superficial cortical
tissues was purified using a kit based method (Qiagen Inc.,
Valencia, CA) and used to synthesize cDNA using Advantage
RT for PCR kit (Clontech Inc., Mountain View, CA). The
cDNA obtained was further diluted 5 times and used (10 𝜇L)
in the real-time PCR reaction with TaqMan rat specific
primers for MtTFA (assay ID Rn00580051 m1) from Applied
Biosystems (Life Technologies, Grand Island, NY). 18S rRNA
was run in parallel as internal control and used to normalize
the data. Data were compared using Delta-Delta Ct method.

2.9. Mitochondrial Respiration. Respiration was measured
using Oxygraph-2K (Oroboros Instruments Corp. Austria).
Briefly, zero and air calibrations were performed with water
followed by calibration with 2mL MiR05 medium (mM:
0.5 EGTA, 3 MgCl

2
, 60 potassium lactobionate, 20 taurine,

10 KH
2
PO
4
, 20 HEPES, 110 sucrose, and 1 g/L fatty acid

free BSA). The chamber was allowed to equilibrate with an
ambient gas phase (air) at 37∘Cwith a stirrer speed of 750 rpm
for >30 minutes to allow air saturation of the respiration
medium. Superficial cortical tissue homogenates were made
in MiR05 using SG3 shredder (Pressure Biosciences Inc.,
South Easton,MA).Mitochondrial respiration wasmeasured
using 100𝜇g homogenate proteins [27, 28].

2.10. Oxidative Stress Markers. Cortical tissue homogenates
were used to determine protein oxidation using Oxiblot
protein oxidation Kit (EMD Millipore, Billerica, MA) and
gp91phox-NADPH oxidase by Western blotting.

2.11. Western Immunoblotting. Western immunoblotting in
cytosolic and nuclear fractions and tissue homogenates were
performed using standard methods as described previously
[29]. Tissue homogenates were made in lysis buffer (mM:
20 Tris-HCl (pH 7.5), 150 NaCl, 1 Na

2
EDTA, 1 EGTA, 1%

Triton, 2.5 sodium pyrophosphate, 1 beta-glycerophosphate, 1
Na
3
VO
4
, 1 𝜇g/mL leupeptin, and protease inhibitor cocktail)

as described [29]. Protein concentrations in the cytosolic
and nuclear fractions and in homogenates were determined
by BCA protein assay kit (Thermo Scientific, Rockford, IL).
Equal amounts of proteins (20𝜇g) from cytosolic and nuclear
fractions and from tissue homogenates were used forWestern
immunoblotting using specific antibodies for Nrf2 (Abcam,
Cambridge, MA), gp91phox-NADPH oxidase (Cell Signaling
Tech., Beverly, MA), 𝛽-actin (EMDMillipore, Billerica, MA),
and lamin B (Cell Signaling Technology, Inc., Beverly, MA).
All the respective HRP conjugated secondary antibodies
were from Santa Cruz Biotechnology, Inc. Imaging and
quantification of protein bands were performed usingG:BOX
software (Syngene, Frederick, MD).The protein band density
for homogenate and cytosolic samples was normalized with
protein loading control, 𝛽-actin, and that of nuclear fractions
with lamin B.

2.12. ATP Determination Assay. Quantitative determination
of ATP was carried out using a commercially available biolu-
minescence assay kit (Life Technologies, Grand Island, NY)
following manufacturer’s instructions. The assay relies on
luciferase’s requirement for ATP to produce bioluminescent
light. Tissue homogenates (10 𝜇g) prepared in MiR05 buffer
(mentioned under mitochondrial respiration above) were
used to measure ATP concentration. A standard curve was
run in parallel using 1–1000 nM ATP in a reaction mixture
that contains 0.5mM D-luciferin and 15𝜇g of recombinant
luciferase. The reaction was followed for 10min and the light
produced read at 560 nm. ATP levels in tissue samples were
determined using the generated ATP standard curve.

2.13. Data Analysis. Data are presented as mean ± SEM.
One-way ANOVA followed by Newman-Keuls post hoc test
was applied to achieve significance using statistical analysis
software (Graphpad Prism, San Diego, CA). The minimum
level of significance was considered at 𝑃 < 0.05.

3. Results

Detailed chemical composition of freeze-dried grape powder
is shown in Table 1(a) that includes flavonoids, phenolic
compounds, anthocyanins, and resveratrol. Table 1(b) shows
nontoxicity of the grape powder constituents except for
resveratrol which resulted in renal toxicity at high concen-
trations when used alone.
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Figure 1: Kidney injury (urinary KIM-1 and protein) and oxidative stress (protein carbonyls and NADPH oxidase) markers in control and
grape power (GP) treated adult and aged rats. KIM-1 and protein levels were measured in the urine (a, b). Protein carbonyls and gp91phox-
NADPH oxidase were determined in renal tissues (c, d). KIM-1 (a), protein (b), and protein carbonyls (c) were determined using kit based
assay system. gp91phox-NADPH oxidase (d) was determined by Western blotting. (d) Upper panel: representative blots for NADPH oxidase
and 𝛽-actin, protein loading control. Lower panel: quantification of protein bands. Results are mean ± SEM. 𝑛 = 7-8 rats. 𝑃 < 0.05 from adult
(∗) and aged control (#) rats.

As shown in Figure 1, kidney injury markers, namely,
proteinuria (Figure 1(a)) and urinary KIM-1 (Figure 1(b)) as
well as oxidative stress markers such as protein oxidation
(Figure 1(c)) and gp91phox-NADPHoxidase (Figure 1(d)), were
elevated in control aged compared to adult rats. Proteinuria,
KIM-1, protein oxidation, and gp91phox-NADPH oxidase lev-
els decreased with GP treatment in aged rats (Figures 1(a)–
1(d)). Mean blood pressure was similar in adult (control
versus GP: 100 ± 2 versus 97 ± 2mmHg) and aged (control
versus GP: 92±3 versus 99±8mmHg) rats irrespective of GP
treatment.

Kidney function, as determined by GFR and sodium
excretion, was reduced in control aged compared to adult
rats (Figures 2(a) and 2(b)). GP treatment increased GFR and
sodium excretion in aged rats (Figures 2(a) and 2(b)). Mito-
chondrial function, as determined by oxygen consumption
and ATP levels, was also reduced in aged compared to adult

control rats (Figures 3(a) and 3(b)), which increased with GP
treatment in aged rats (Figures 3(a) and 3(b)).

Further, cytosolic and nuclear levels of Nrf2 were
decreased in control aged compared to adult rats, which
increased with GP treatment in aged rats (Figure 4(a)).
The mRNA levels of mitochondrial transcription factor A
(MtTFA) were reduced in aged compared to adult rats
(Figure 4(b)). GP treatment increased MtTFA mRNA levels
in aged rats (Figure 4(b)).

4. Discussion

The current study demonstrates that GP treatment improved
kidney function as determined by GFR and natriuresis
(sodium excretion) in aged rats. This could be attributed to
the antioxidant property of GP [18, 30, 31]. GP while improv-
ing kidney function also decreased age-related increase in
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Figure 2: Kidney function in control and grape power (GP) treated adult and aged rats. Kidney functionwasmeasured as creatinine clearance,
an index of glomerular filtration rate (GFR) (a) and volume expansion-induced natriuresis, UNaV (b) as detailed in the Methods. Results are
mean ± SEM. 𝑛 = 7-8 rats. 𝑃 < 0.009 from adult (∗) and aged control (#) rats.
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Figure 3: Renalmitochondrial function in control and grape power (GP) treated adult and aged rats.Mitochondrial functionwas determined
by measuring oxygen consumption (respiration) (a) and ATP levels (b) in renal tissues. Oxygen consumption (a) and ATP levels (b) were
measured using Oroboros instrument and kit based assay system, respectively (details in the Methods). Results are mean ± SEM. 𝑛 = 7-8
rats. 𝑃 < 0.05 from adult (∗) and aged control (#) rats.

oxidative stress in these rats. Furthermore, GP reduced age-
related kidney injury as kidney injury markers, namely,
proteinuria and KIM-1 levels, decreased with GP treatment
in aged rats.

In order to investigate the mechanism(s) potentially
responsible for GP-mediated improvement in aging kidney
function, we focused on mitochondrial mechanisms. Mito-
chondria are critical for the maintenance of normal cellular
functions and are reported to decay during aging process and
become a major source of cellular oxidative stress burden
[32]. We observed that aging kidneys exhibited reduced
mitochondrial function which was associated with increased
oxidative stress. Furthermore, increased levels of gp91-phox
subunit of NADPH oxidase were noted in the aging kidneys.
NADPH oxidase is known to generate superoxide and poten-
tially contribute to age-related increase in oxidative stress. It is
likely that aging mitochondria (reduced function)-mediated
ROS generation contributes to gp91-phox overexpression
in the aging kidneys. This postulation is based on our

observation thatGP,while improvingmitochondrial function
and reducing oxidative stress burden, also decreased gp91-
phox levels in the aging kidneys.

Mitogenesis (mitochondrial biogenesis) is known to
regulate mitochondrial function [33, 34]. It is likely that
mitogenesis is altered and affects mitochondrial function
during aging. This is an attractive postulation considering
the following observations.MitogenesismarkerMtTFA levels
were decreased in the aging kidneys, which was associated
with reduced mitochondrial respiration and ATP levels in
the kidneys of aged rats. Interestingly, GP treatment, while
increasing MtTFA levels, also improved renal mitochondrial
respiration as well as ATP levels in aged rats. These are
important observations indicating that reduced mitogenesis
contributes to age-related decline in mitochondrial and kid-
ney functions. And GP via mitogenesis potentially improves
mitochondrial and kidney functions in aging rats.

Although PGC-1𝛼 (peroxisome proliferator-activated
receptor-gamma coactivator-1𝛼) is considered to be the
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Figure 4: Nrf2 (a) and mitochondrial biogenesis marker MtTFA (b) in the kidney of control and grape power (GP) treated adult and aged
rats. (a) Nrf2 in cytosolic and nuclear fractions was determined by Western blotting. Upper panel: representative blots. 𝛽-actin and lamin
B were used as protein loading controls for cytosolic and nuclear fractions, respectively. Lower panel: quantification of protein bands. (b)
MtTFAmRNA levels were determined by qPCR. Details for (a) and (b) are in the Methods. Results are mean ± SEM. 𝑛 = 7-8 rats. 𝑃 < 0.0001
from adult (∗) and aged control (#) rats.

master regulator of mitochondrial biogenesis [35–37], we did
not find any change in the levels of PGC-1𝛼 with GP in adult
and aged rats (data not shown). This negates role of PGC-
1𝛼 in GP-mediated improvement in mitogenesis in the aging
kidneys.

Contrary to this, Nrf2 (nuclear factor erythroid 2 related
factor) seems to be involved as we found increased levels of
Nrf2 in GP treated aged rats. Traditionally Nrf2 is viewed
as a regulator of antioxidant defense [38]. New role of Nrf2
as a regulator of mitochondrial function is emerging [39].
For example, loss of Nrf2 is linked to depolarization of
mitochondria, decreased levels of cellular ATP, and impaired
mitochondrial respiration in murine neurons and embryonic
fibroblast [40]. Hence, it is likely that the beneficial effects
of grape powder are mediated via inducing Nrf2 activity

which in turn increasesmitogenesis and keepsmitochondrial
function intact thus contributing to improvement in aging
mitochondrial and kidney functions.

5. Conclusions

Grape powder, at 1.5% dose used in the current studies,
was used in our earlier published work and no toxicity
was observed throughout the treatment period [18]. Grape
powder included in this study was prepared from whole
grapes and contains polyphenols including resveratrol, fla-
vans, flavanols, anthocyanins, and simple phenols. From
this complex mixture, it remains to be determined if one
particular component or a combination of components
is indispensable in ameliorating aging mitochondrial and
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kidney functions. But, toxicity was not reported for any
of the individual components of grape powder except for
resveratrol which caused renal toxicity when used alone
[24]. And, grape skin alone failed to reduce oxidative stress
burden in obesemice [41].These reports suggest that perhaps
one constituent is not sufficient but whole grapes with all
their constituents, as used in this study, are needed to exert
beneficial effects. Therefore, it can be suggested that grape
powder renders its protection to aging mitochondrial and
kidney functions by activating antioxidant defense systems
such as Nrf2 and that grape powder interventionmight prove
beneficial in restoring age-related mitochondrial and kidney
dysfunctions. Also, it is proposed that itmay be undertaken as
combination therapy to treat mitochondrial diseases such as
Leigh’s syndrome [42, 43] and Kearns-Sayre syndrome [44].
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